Genome-Wide Association Mapping of Freezing Tolerance Loci in Canola (Brassica napus L.)

نویسندگان

چکیده

Winter canola generally produces greater yields than spring canola. However, its range is limited due to inability withstand the harsh winter conditions that occur in many northern regions of U.S.A. To identify loci associated with freezing tolerance canola, we conducted a genome-wide association study (GWAS) using genotyped diversity panel containing 399 accessions consisting primarily One-month-old greenhouse grown plants were subsequently cold-acclimated for two months an environmental growth chamber prior phenotyping survival visual damage scale and chlorophyll fluorescence (Fv/Fo). There was reasonable correlation observed between ratings among top loci; results indicated some contributed both damage/tolerance photosynthetic efficiency. The resulting numerical values phenotypes used analyses identified SNPs. Thirteen significant markers on nine chromosomes scored, several showing significance multiple phenotypes. Twenty-five candidate genes as previously tolerance, photosynthesis, or cold-responsive Arabidopsis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.)

Changes in the rapeseed branch angle alter plant architecture, allowing more efficient light capture as planting density increases. In this study, a natural population of rapeseed was grown in three environments and evaluated for branch angle trait to characterize their phenotypic patterns and genotype with a 60K Brassica Infinium SNP array. Significant phenotypic variation was observed from 20...

متن کامل

Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.)

Plant architecture is vital not only for crop yield, but also for field management, such as mechanical harvesting. The branch angle is one of the key factors determining plant architecture. With the aim of revealing the genetic control underlying branch angle in rapeseed (Brassica napus L.), the positional variation of branch angles on individual plants was evaluated, and the branch angle incre...

متن کامل

A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus

Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identificatio...

متن کامل

Genome-wide Association Study Identifies New Loci for Resistance to Sclerotinia Stem Rot in Brassica napus

Sclerotinia stem rot (SSR) caused by the necrotrophic fungus Sclerotinia sclerotiorum is a major disease in rapeseed (Brassica napus) worldwide. Breeding for SSR resistance in B. napus, as in other crops, relies only on germplasms with quantitative resistance genes. A better understanding of the genetic basis for SSR resistance in B. napus thus holds promise for the genetic improvement of disea...

متن کامل

Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus

Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2021

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy11020233